您的位置:壹拷网 > 生活 > >正文

​深度长文:深层解读黑洞,黑洞或许隐藏着宇宙终极奥秘!

摘要深度长文:深层解读黑洞,黑洞或许隐藏着宇宙终极奥秘! 我们先从黑洞的形成来分析一下: 我们都知道引力,其实引力是一种很弱的力,即使地球的质量高达 6×10^24 千克,你也可以...

深度长文:深层解读黑洞,黑洞或许隐藏着宇宙终极奥秘!

我们先从黑洞的形成来分析一下:

我们都知道引力,其实引力是一种很弱的力,即使地球的质量高达 6×10^24 千克,你也可以跳起来,或者乘飞机飞到天空中去。

但是你的这种自由只是暂时的,物体通常在离地之后总会再落下来,除非你的速度超过一定数值。如果你能以每秒 11 千米的速度从地面上跳起,你就可以逃脱地球的引力。科学家至少要以这样的逃逸速度发射火箭才能将飞行器送入太空。

一个天体体型越大,物质排列越紧密,其逃逸速度就越高。从木星、太阳到白矮星、中子星,它们的逃逸速度是依次递增的。然而,最大的那些恒星的核心坍缩之后会形成一个密度极高的物体,这就是「黑洞」,其逃逸速度甚至比光速还要高。因为没有什么能比光传播得更快,所以也没有什么东西能从这些「黑洞」中逃脱。

这就是它们名字的来历——所有的光线都被它们吞了进去,所以它们看起来是黑色的。如果你太靠近黑洞,就会被它的引力永久地困住,不管多大的推动力都不能让你摆脱它的魔爪,而这个无法逃离的边界被称为「事件视界」。

当跨过这条边界的时候,你可能都没觉得有什么不对劲儿的地方,但是这会改变你的命运。假如你的脚先跨过事件边界,那么黑洞对你的脚的引力比对你的头的更大,并且二者之间的差异最终会超过原子键的强度,这时你会被拉长,物理学家称其为「意大利面条化」。

那么,当你被黑洞扯成一根长长的意大利面的时候,你会落入何处呢?这是现代物理学中最棘手的问题之一。

根据爱因斯坦的广义相对论,严格地说,恒星的核心最终会坍缩成一个体积无限小、密度无限大的点,我们称之为「奇点」,空间和时间都在此处完结。

我们通常认为,落入黑洞的物体都被吸入了奇点。

质量最大的那些恒星在死亡时会形成一个将时空扭曲到极限的黑洞,任何东西都无法从中逃脱 不过,这可能还没有揭示全部的真相,因为它忽略了量子物理中对于微观尺度下物质规律的描述。

引力波

2015 年 9 月 14 日被载入科学史,成为具有里程碑意义的一天。在这一天,我们打开了一扇观测宇宙的新窗户。这件事要从非常非常遥远的星系说起。

大约在 13 亿年前,两个黑洞——其中每一个黑洞的质量大约都是太阳的 30 倍——在相互缠绕、旋转后相撞。这次相撞的动静实在太大,巨大的冲击波冲破了时空原本的结构,以光速向外传播,这些引力波最终于 2015 年 9 月到达地球。

正巧,我们在那时刚刚启动了一台能够捕获引力波信号的探测器。随后在 2015 年 12 月、2017 年 1 月以及 2017 年 8 月,我们又检测到了别的黑洞合并过程中的引力波。另外,科学家们还在 2017 年 8 月捕获到了两颗中子星合并所产生的引力波信号。未来,我们一定还会捕获越来越多的引力波。

引力波这一概念早在一个世纪前便已被提出。爱因斯坦早在 1915 年提出广义相对论时就预言了引力波的存在,但是我们却用了整整 100 年才第一次探测到它的信号。这是因为引力波就像池塘中的涟漪,会在向外传播的过程中逐渐消失,引力波在抵达地球时已经变得很微弱了,因此很难被探测到。

13 亿光年,这是一段相当长的路程。

用于探测引力波信号的是激光干涉引力波天文台(LIGO),它是由两台分别位于美国华盛顿州和路易斯安那州的探测器组成,这两台探测器都是由两根 4 千米长的真空管组成的直角。一束激光经过一个分光器,分成两部分射向两条真空管的末端,然后被末端放置的镜片反射回来。

一般情况下,两边的激光会在相同的时间回到出发点。但是,如果引力波在激光传播的过程中到来,那么其中一根管道中的空间就会被轻微地拉伸和收缩(因为引力波实质上是时空结构的扰动),这就意味着一束激光回来的落点也会发生改变。LIGO 的灵敏度相当高,可以探测相当于质子(原子中心带正电的粒子)直径的 1/10000 的距离改变。

再打一个比方,它可以测量出地球到比邻星(除太阳之外离我们最近的恒星)之间 40 万亿千米长的距离中一根头发丝直径的变化。

2017 年 10 月,为这一发现做出努力的三位科学家被授予诺贝尔物理学奖。这些探测意义非常重大,因为很多宇宙中的重大事件发生后只会发出引力波信号,而我们终于能够探测到这些事件了。

时间膨胀

爱丁顿于1919 年完成的日食观测,证实了爱因斯坦的广义相对论中提出的一个观点:

大质量物体会扭曲其周围的空间结构,而引力波的发现则进一步巩固了该观点。事实上被扭曲的不仅仅是空间,时间也是如此。还记得爱因斯坦把时间和空间合并为一个被称为时空的四维结构吗?

这告诉我们,时间流逝的速度会随着时空扭曲程度的不同而改变,如果你靠近一个重物,你的时间就会比别人的时间流逝得更慢。即使是在地球上,这种时间的膨胀也是非常需要注意的。对于储存在实验室里不同架子上的那些有着极高精准度的原子钟而言,如果有哪一个被放在更靠近地面的位置,那么最终它们就会无法同步。

我们还会定期修正 GPS 卫星上的时钟,因为它们位于太空中,时空扭曲的情况更轻,时间流逝得比地面上更快。不过在黑洞附近,这种时空扭曲的程度会非常明显。

在风靡一时的影片《星际穿越》中,绕着黑洞飞行的宇航员所经历的 1 个小时相当于我们在地球上经历 7 年。

如果目送一个人逐渐接近黑洞,你会发现他们身上发生的一切都变得越来越缓慢,最后,当他们的身体即将跨越事件视界的时候,他们看起来就像被冻住了一样。在你看来,他们的时间已经完全停止了;但在他们看来,是你的时间停止了。

这是引力时间膨胀,但还有一种由速度引起的时间膨胀。如果我说「飞人」博尔特在 100 米短跑中能赢你,你一点儿都不会惊讶,因为他能以更快的速度来跨过空间。

如果我说博尔特能比你更快地度过时间,可能你就会觉得有些奇怪了,但事实的确是这样,因为实际上你们是在时空中赛跑。

在这个例子中,你和博尔特的速度差异并不是很大,所以时间流逝的速度在你们两者之间的差异也很小,而当速度差异更大就会产生更明显的效果。宇航员根纳季·帕达尔卡(Gennady Padalka)保持着在太空中停留时间最长的世界纪录——1998 至 2015 年,他在和平号空间站以及国际空间站中共计停留了 879 天。

在这段时间中,他以每小时 28 000 千米的速度行进。考虑到上述两种原因引起的时间膨胀,如果他一直待在地面上的话将会比现在老 0.02 秒。这使得帕达尔卡成了人类历史上最伟大的时间旅行者,他向未来旅行了 1/50 秒。

白洞与虫洞

如果说黑洞是一个你永远无法从中逃离的存在,那么白洞就是你永远无法返回的地方。黑洞只进不出,而白洞只出不进。不过目前,白洞还只是理论性推测,只存在于爱因斯坦广义相对论的数学推导中。物理学家们在考察黑洞中的物体接近奇点时会发生什么的问题时,便会出现「白洞」。

新西兰物理学家罗伊·克尔(Roy Kerr)在 20 世纪 60 年代时提出,黑洞中的奇点并不是一个点,而是一个环。通常情况下,一个撞入奇点的物体会被奇点从时空中抹去,但是如果克尔环(克尔提出的这个「环」)存在的话,它就能毫发无损地穿过去。

那么,这个穿过克尔环的物体去哪儿了呢?

克尔根据爱因斯坦方程计算得到的结果显示,它会进入一个被称为「爱因斯坦–罗森桥」的隧道,然后在另一端被白洞「吐」出。

有些人认为物体从白洞出去之后到达的仍然是我们所在的宇宙内部,只是位置发生了变化,而另外一些人则认为物体此时已经处于另一个宇宙中了。

无论哪一种说法是对的,由于白洞只能出不能进,这个物体都无法再通过白洞回到原来所在的地方。爱因斯坦–罗森桥有一个更为通俗的名字:虫洞。这个名字来源于虫子在苹果中运动时做出的选择,它既可以选择从苹果的表面爬到想要去的地方,也可以选择在苹果内部穿行一段更短的路径。

我们常常在科幻小说中见到作为时间和空间上的捷径的虫洞。确实,虫洞的物理特性表明我们也许可以借助它回到过去。

但是,如果它们存在的话——这是一个相当大胆的假设——它们可能很不稳定,并且很快就会关闭。

时空可能会以图中的方式弯曲,此时会出现一条捷径,我们可以利用它来进行时间旅行 所以,就目前掌握的情况而言,白洞和虫洞只是数学上的有趣推论,倘若有一天我们真的找到万物理论,情况可能会发生变化。

霍金辐射

作为一名理论物理学家和宇宙学家,史蒂芬·霍金(Stephen Hawking)教授终其一生都在钻研黑洞的奇异特性。他最重要的贡献之一,就是提出黑洞会在被称作「霍金辐射」的效应下逐渐蒸发。

物理学家知道,看似空旷的宇宙不可能真的是空的。宇宙不断地将能量转化为一些成对的粒子,它们就像灰姑娘的马车一样,很快就会消失,否则就违背了物理定律。而霍金天才般地将这一过程放到黑洞的事件视界上。

他想象出的场景是这对粒子中的一个落入了黑洞中,而另一个在外面,由此它们就再也无法一起成对消失了,于是一个被黑洞吸收,另一个则逃到无边无际的宇宙中。这个落单的粒子在向外逃逸时会吸收一部分来自黑洞的能量,而它带着能量向外传递的过程就是霍金辐射。但是带走的这些能量对于黑洞来说只是九牛一毛,一个黑洞需要 2 000 亿亿亿亿亿亿亿亿年才会完全蒸发,这个数字是 2 后面有 67 个 0!

也就是说,黑洞并不完全是黑的,它们会以霍金辐射的形式发出极为微弱的光芒。

万物理论

史蒂芬·霍金在黑洞通过霍金辐射逐渐蒸发的研究中结合了物理学中最重要的两个理论:量子力学——微观尺度下粒子运动的规律,以及爱因斯坦的广义相对论。

对于黑洞这样一个独特的物体来说,这两种理论都很重要。通常情况下,对引力以及行星的公转轨道进行计算时不需要考虑量子力学;同样,解释原子的运动规律时也不需要考虑引力。

但黑洞是不一样的,当恒星发生坍缩时,大量物质被塞进了一个很小的空间中,引力突然在原子大小的尺度上也起到了作用。广义相对论描述了引力是如何由弯曲的时空引起的,如果严格按照这种说法,是黑洞将弯曲的时空成了一个叫作奇点的东西。

但是体积无限小、密度无限大对于一个物体而言到底意味着什么呢?量子力学的规律对于一个比原子还小的空间来说还有效吗?

物理学家们非常重视这些问题,并且一直试图将量子力学和广义相对论结合成一个理论——一个可以用于解释宇宙万物的通用框架,从最小的亚原子粒子到最大的超星系团全都适用,这就是万物理论。

然而,物理学家在这条探索之路上屡屡受挫。这两种理论就是不太能很好地结合在一起。它们是完全不兼容的,对其中一个理论的应用会产生与另一个理论的不可调和的分歧。而这促使物理学家们开始探索更加极端的可能性,其中包括探索更多的维度——而非我们熟悉的三维时空。

(超)弦理论与圈量子引力

近年来,由于美国哥伦比亚广播公司(CBS)热播剧《生活大爆炸》中那个与社会格格不入的天才谢尔顿·库珀(Sheldon Cooper)高涨的人气,弦理论已成为流行文化的一部分。

它是物理学家试图统一量子力学和万有引力、探索万物理论的方法之一。这一理论的基本前提是,我们周遭的一切都是由很小的弦发生振动构成的。

就像用不同的方式在乐器上拨动琴弦会产生不同的音符一样,这些弦的振动会创造出各种亚原子粒子。而把这与超对称性理论相结合,就有了超弦理论。弦理论的研究者可以使用这一模式来将量子力学和广义相对论结合在一起,但是他们的方程只有在空间有 9 个维度时才成立。

这些物理学家为了解释为什么我们所见到的世界是 3 维的,提出其他维度蜷缩到了微观世界中,我们无法观察到它们。

但是,目前仍然没有任何证据显示这些维度真的存在,也无法证明超弦理论不只是一个存在于数学推导中的幻想。在《生活大爆炸》的前几季中,谢尔顿有一个死对头叫作莱斯莉·温克尔(Leslie Winkle),她的研究重点是圈量子引力论,这是另一个将量子力学和广义相对论结合在一起的理论。

爱因斯坦认为,时空是一种连续的结构,当它被大质量物体弯曲时会产生引力。但是在量子力学中,没有任何东西是连续的。

在圈量子引力论中,时空量子也是不连续的,而是由一些闭合的环编织而成的结构,就像羽绒被一样。起初,它看起来像是一个整全的编织物,但是在显微镜下你会发现它实际上是由一个个独立的针脚组成的。

在圈量子引力论中,时空并不是平滑的,而是呈颗粒状,这可以通过某些方式进行验证。天文学家正在观测并研究来自遥远星系的光,验证其是否在传播过程中被这种时空结构所改变。

标签:

推荐阅读

  • ​谢津:19岁和西北天后齐名,被母亲的控制欲伤害,28岁自缢身亡

    谢津:19岁和西北天后齐名,被母亲的控制欲伤害,28岁自缢身亡 “大红那个灯笼就映红了天,今天咱们中国人就过大年.......” 1995年的春晚,陶金和当红女歌手谢津合作的《你想看什...

    2024-06-20 02:21:27
  • ​韦恩斯坦性侵案大结局,再判16年!匿名原告身份公开站出来了!

    韦恩斯坦性侵案大结局,再判16年!匿名原告身份公开站出来了! 话说,曾轰动一时的“韦恩斯坦性侵案”最近又有新进展。 法庭支持一位匿名原告的指控,再次将他定罪判刑, 而且...

    2024-06-20 02:19:22
  • ​曹云金与郭德纲之争,欺师灭祖靠徒敛财10年恩怨谁错了

    曹云金与郭德纲之争,欺师灭祖靠徒敛财10年恩怨谁错了 2007年,是郭德纲的多事之年。 当年的3.15晚会,“明星”郭德纲成为了当晚最受关注的一个人,因为郭德纲代言的减肥产品被爆...

    2024-06-20 02:17:17
  • ​邓萃雯:佘诗曼,不和你斗了

    邓萃雯:佘诗曼,不和你斗了 邓萃雯:佘诗曼,不和你斗了 文/正经婶儿 《新闻女王》爆了。 或职场或宫斗各有争议,但毋庸置疑的是港风和港姐。 这一切,就像是阔别已久的重逢。...

    2024-06-20 02:15:12
  • ​于小伟:和高圆圆恋爱,出道23年不火,娶平凡妻子也幸福

    于小伟:和高圆圆恋爱,出道23年不火,娶平凡妻子也幸福 2014年11月28日,高圆圆与赵又廷在台北举行婚礼。 这一天,不知有多少人梦碎。 甚至有人对赵又廷大放厥词:“夺妻之仇不共...

    2024-06-20 02:13:07
  • ​虎头茉莉的养殖方法和注意事项

    虎头茉莉的养殖方法和注意事项 一、土壤选择 虎头茉莉是一种不好养护的花卉植物,平时养护管理上需小心。土壤需提供疏松透气、排水性好的,可用园土混合腐熟的木屑。它的抗病...

    2024-06-19 13:06:19
  • ​鸿运果的养殖方法及注意事项

    鸿运果的养殖方法及注意事项 习性 首先我们当然得了解它的习性特点,这样就能知道怎么做对它有利。首先,它对温度的要求比较高,喜欢温暖一些的环境。第二,它喜欢光照,不能...

    2024-06-19 13:04:14
  • ​扶桑怎么施肥

    扶桑怎么施肥 换盆及修剪时的施肥方法 盆栽用土宜选用疏松、肥沃的沙质壤土,每年早春4月移出室外前,应进行换盆。在扶桑花施肥方法中,在换盆时要做到3件事:一是换上新的培养...

    2024-06-19 13:02:09
  • ​多肉的养殖方法和注意事项

    多肉的养殖方法和注意事项 一、土壤 养多肉最好使用通透性较高,腐殖质、养分含量较高的土壤。具体来说,可以将粗粒珍珠岩、东北松针土及石渣按照5:3:1的比例均匀混合,用于多肉...

    2024-06-19 13:00:04
  • ​大叶红宝石怎么养

    大叶红宝石怎么养 一、养护方法 1、光照:大叶红宝石需要充足的光照。要把它放到向阳处,接受长时间的光照。光照不足容易使它的叶片变绿,导致生长不良。 2、温度:大叶红宝石...

    2024-06-19 12:57:59
  • ​栀子花如何修剪

    栀子花如何修剪 1、修剪时间 夏季是它的生长旺盛期,所以很容易造成徒长的现象,这时就要适当修剪了,而在花期过后,栀子花即将进入休眠期时,也需要对其进行修剪,所以对于栀...

    2024-06-19 12:55:55
  • ​长春花的花期

    长春花的花期 长春花的花期 长春花的花期是很长的,基本上长春花在开花的时候,花期使从4月份——5月份的时候开始的,一般可以持续相当长的时间,从春季到秋季花开不断,甚至可...

    2024-06-19 12:53:50
  • ​一叶兰和白掌的区别

    一叶兰和白掌的区别 一、形态区别 一叶兰的根状茎形状为圆柱形的,直径大约5-10毫米左右。叶子一般是单生,形状比较的狭长,长度为22-46厘米左右,先端的位置逐渐地变尖,边缘处...

    2024-06-19 12:51:45
  • ​薰衣草如何种植,薰衣草的种植方法介绍

    薰衣草如何种植,薰衣草的种植方法介绍 一、种植时间 薰衣草适宜在温暖的环境中生长,因此种植多在春秋季。夏季的气温太高,强烈的光照容易使幼苗患上日灼病,冬季则太冷,低...

    2024-06-19 12:49:40
  • ​香雪球怎样播种

    香雪球怎样播种 播种时间 由于香雪球在生长期比较怕热,并且播种最适宜的温度为15℃—20℃,所以一般是在9月中下旬以后进行秋播。 播种准备 基质可以用营养土或者河沙、泥炭土等...

    2024-06-19 12:47:35
  • ​红王子锦带怎么扦插

    红王子锦带怎么扦插 时间 一般来说,这种方法是最简单高效的,而且也是比较适合家庭的,所以大片种植的话可以选择播种,但需求量不大的时候,完全可以选择这个方法,不仅简单...

    2024-06-18 18:23:24
  • ​春之奇迹繁殖的方法

    春之奇迹繁殖的方法 一.植物的叶子插土 1首先要从健康的主枝干上面摘取成熟的叶片,这样子才能保证叶片在长芽的过程中长芽率能够比较高。我们可以从比较大型的植株下面摘掉最...

    2024-06-18 18:21:19
  • ​彼岸花喜阴还是喜阳,彼岸花家庭可以养吗

    彼岸花喜阴还是喜阳,彼岸花家庭可以养吗 一、喜阴还是喜阳 彼岸花喜半阴。半阴既不是一点阳光不见,也不是能放到太阳底下一直晒。通常要把它种在有散射光的明亮处,这样既可...

    2024-06-18 18:19:14
  • ​白晶菊播种怎么提高成活率

    白晶菊播种怎么提高成活率 白晶菊的种植时间与适宜温度 春季和秋季是最适宜种植白晶菊的。在温暖的地区以秋播为主,而华北地区则适宜春播。种子发芽的适宜温度在15至20摄氏度,...

    2024-06-18 18:17:10
  • ​朱缨花怎么繁殖

    朱缨花怎么繁殖 朱缨花的繁殖方法 播种繁殖 朱缨花的花期为每年夏季的8、9月份,采种期则在10月份为佳。选取饱满完整的健康种子,置于干燥通风的环境中储存。等到来年春天播种。...

    2024-06-18 18:15:05